ON THE ESTIMATION OF THE EXPONENTIAL LOWER BOUND WHEN AN OUTLIER MAY BE PRESENT

By

S. K. SINHA*

University of Manitoba Winnipeg, Canada

(Received: January, 1976)

In a simple life testing experiment we assume that (X_1, X_2, \ldots, X_n) are n independent and identically distributed random variables $(i.\ i.\ d.\ r.\ v.)$ where X_i represents the life of the ith item with some underlying probability density function $(p.d.\ f)$ say $f(x, \theta)$. Suppose as against the X's being homogeneous and $i.\ i.\ d.\ r.\ v$'s with $p.\ d.\ f.$

$$f(x, \mu) = \exp\{-(x-\mu)\}, x \geqslant \mu$$

(n-1) of them are distributed as $f(x, \mu)$ and one of them is distributed as $f(x, \mu + \delta)$, $x \ge \mu + \delta$, $\delta \ge 0$ (Kale and Sinha [1]). Before the start of the experiment we have no prior knowledge as to which one of these n observations is the outlier. We are interested in estimating μ where δ acts as a nuisance parameter.

It is well-known that $T_1=x_{(1)}-\frac{1}{n}$ is the uniformly minimum variance unbiased estimator of μ under $\delta=0$. Before we look for an alternative estimator we study how T_1 behaves in the presence of $\delta\neq 0$.

2. Distribution of $Y_{(1)}$ for a given δ .

Let
$$Y_{(i)} = X_{(i)} - \mu$$
.

Considering the *n* possible positions of the outlier observation. the joint p. d. f. of $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ is given by

$$P\left[\begin{array}{c} Y_{(1)}, \ Y_{(2)}, \ \dots \dots \ Y_{(ni)} \mid \delta \end{array}\right] = \frac{n!}{n} \left[\begin{array}{c} \exp\left(-\frac{\Sigma}{2} Y_{(i)}\right) \\ \exp\left\{-\left(\begin{array}{c} Y_{(1)} - \delta \end{array}\right)\right\} I\left(\begin{array}{c} Y_{(1)}, \ \delta \end{array}\right) + \exp\left(-\frac{n}{\Sigma} Y_{(i)}\right) \\ \exp\left\{-\left(Y_{(2)} - \delta \right)\right\} \end{array}$$

^{*}Partially supported by a grant from the Faculty of Graduate Studies University of Manitoba.

$$I\left(Y_{(n)}, \delta\right) + \dots + \exp\left(-\frac{n-1}{i}Y_{(n)}\right) \exp\left\{-\left(Y_{(n)} - \delta\right)\right\}$$

$$I\left(Y_{(n)}, \delta\right) \Big],$$
where
$$I(a, b) = 1, a \geqslant b$$
and
$$= 0, a < b.$$
For $y_{(1)} > \delta$,
$$1 - G(u) = P(Y_{(1)} \geqslant u)$$

$$= \exp\{-(n-1)u\} \int_{u}^{\infty} \exp\{-(y-\delta)\} dy$$

$$= \exp\{\delta\} \{\exp(-nu)\},$$
and
$$g(y_{(1)} \mid \delta) = n \exp\{-(n-u)\},$$

$$g\{y_{(1)} \mid \delta\} = \frac{n!}{n} \exp\{\delta\} \left[\frac{(n-1)\exp\{-(n-1)\delta\}}{(n-1)!} + \frac{(n-2)\exp\{-(n-2)\delta\}}{(n-2)!} \left\{1 - F\left(y_{(1)}\right)\right\}\right\}$$

$$+ \frac{(n-3)\exp\{-(n-2)\delta\}}{(n-3)!} \left\{1 - F(y_{(1)})\right\}^{n-3}$$

$$+ \exp\left(-\delta\right) \frac{\{1 - F(y_{(1)})\}^{n-3}}{(n-3)!} + \exp\left(-(n-3)\delta\right)$$

$$= \frac{(n-1)!}{(n-2)!} \left[\exp\{-(n-2)\delta\} + (n-2)\exp\{-(n-3)\delta\}\right\}$$

$$\{1 - F(y_{(1)})\} + \frac{(n-2)(n-3)}{2!} \exp\left(-(n-4)\delta\} \{1 - F(y_{(1)})\}^{2} + \dots$$

$$+ \exp\left(-\delta\right)(n-2)\left\{(1 - F(y_{(1)})\right\}^{n-3} + \left\{1 - F(y_{(1)})\right\}^{n-2}\right\}$$

$$= (n-1) \exp\left(-y_{(1)}\right) \left[\exp\left(-\delta\right) + \left\{1 - F(y_{(1)})\right\}\right]^{n-2}$$

$$= (n-1) \exp\left(-y_{(1)}\right) \left[\exp\left(-\delta\right) + \left\{1 - F(y_{(1)})\right\}\right]^{n-2}$$

 $=(n-1) \exp \{-(n-1) y_{(1)}\} \qquad ...(2)$

From (1) and (2) we obtain

$$E\{Y_{(1)}\} = n \{\exp(\delta)\} \int_{\delta} y \{\exp(-ny)\} dy + (n-1)$$

$$\int_{0}^{\delta} y [\exp\{-(n-1)y\}] dy$$

$$= \left(\frac{1}{n} + \delta\right) \exp\{-(n-1)\delta\} + \frac{1}{n-1} - \left(\delta + \frac{1}{n-1}\right)$$

$$= \exp\{-(n-1)\delta\}$$

$$= \frac{1}{n-1} - \frac{\exp\{-(n-1)\delta\}}{n(n-1)}$$

Bias
$$(T_1 | \delta) = E\left(Y_{(1)} - \frac{1}{n}\right) = \frac{1 - \exp\{-(n-1) | \delta\}}{n(n-1)}$$

which
$$\rightarrow \frac{1}{n(n-1)}$$
 as $\delta \rightarrow \infty$.

MSE
$$(T_1/\delta) = \frac{n^2+1}{n^2(n-1)^2} - \frac{2 \exp \{-(n-1) \delta\}}{n(n-1)^2} \{1+(n-1) \delta\},$$

which
$$\rightarrow \frac{n^2+1}{n^2(n-1)^2}$$
 as $\delta \rightarrow \infty$.

Note that for $\delta=0$, we have the well known results $g(y_{(1)})=n \exp(-ny_{(1)})$, $y_{(1)}>0$,

$$E(Y_{(1)}) = \frac{1}{n}$$

and

Var
$$(y_{(1)}) = \frac{1}{n^2}$$

Consider the estimator $T=x_{(1)} - \frac{1}{n-1}$.

Bias
$$(T/\delta)$$
 = Bias $(T_1/\delta) - \frac{1}{n(n-1)}$

which $\rightarrow 0$ as $\delta \rightarrow \infty$

$$MSE(T/\delta) = MSE(T_1/\delta) - \frac{2 \text{ Bias } (T_1/\delta)}{n(n-1)} + \frac{1}{n^2(n-1)^2}$$

which
$$\rightarrow \frac{1}{(n-1)^2}$$
 as $\delta \rightarrow \infty$.

The maximum increase in MSE= $\lim_{\delta \to \infty}$ MSE- $\lim_{\delta \to 0}$ MSE

$$= \frac{2}{n(n-1)^2} \text{ with } T_1$$
$$= \frac{2}{n^2(n-1)} \text{ with } T.$$

and

The maximum increase in MSE (T_1/δ) and MSE (T/δ) are computed for n=5 (1) 10_5 and $\delta=2$ (2) 10.

Maximum Increase in MSE

Estimator	5	6	7	8	9	10
T_1	0.025	0.013	0.008	0.005	0.003	0.002
T	0,020	0.011	0.007	0.004	0.003	0.00 2

T has a uniformly smaller MSE than T_1 . The computed values using these (n, δ) pairs provide corroborative evidence in support of the conclusion which for large δ is otherwise obvious from the fact that the expression for the maximum increase in MSE (T/δ) is less than that for such increase in MSE (T_1/δ) .

SUMMARY

Consider a situation where (n-1) of the observations $(X_1, X_2, ..., X_n)$ are distributed as $f(x, \mu) = \exp\{-(x-\mu)\} \ x \geqslant \mu$ and one of them is distributed as $f(x, \mu+\delta)$, $x \geqslant \mu+\delta \geqslant \mu$. The problem of estimating μ where δ acts as a nuisance parameter has been discussed and the estimator

 $T=X_{(1)}-\frac{1}{n-1}$ is recommended, on the basis of a comparative study of the two estimators considered, viz.

$$T \text{ and } T_1 = X_{(1)} - \frac{1}{n}$$
.

Acknowledgement

The author wishes to thank the referee for valuable comments which considerably improved the quality of the paper.

REFERENCE

[1] Kale, B.K. and Sinha, S.K. "Estimation of expected life in the presence of an outlier observation", Technometrics, Vol. 13, No. 4.